The biokinetics and clearance of a low single dose (typically 40-400 µg/kg BW) of 48V-radiolabeled, pure TiO2 anatase nanoparticles ([48V]TiO2NP) with a median aggregate/agglomerate size of 70 nm in aqueous suspension after intravenous injection into female Wistar rats. Biokinetics and clearance were followed from 1-hour to 4-weeks. The use of radiolabeled nanoparticles allowed a quantitative [48V]TiO2NP balancing of all organs, tissues, carcass and excretions of each rat without having to account for chemical background levels possibly caused by dietary or environmental titanium exposure.
The present biokinetics study is part 1 of a series of studies comparing biokinetics after three classical routes of intake (intravenous (IV) injection (part 1), ingestion (part 2), intratracheal instillation (part 3)) under identical laboratory conditions, in order to verify the common hypothesis that IV-injection is a suitable predictor for the biokinetics fate of nanoparticles administered by different routes. This hypothesis is disproved by this series of studies.
Part 1: Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats (Part 1).
Part 2: Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats (Part 2)
Part 3: Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats (Part 3)